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1 Introduction

Wave loads may be defined as time varying forces on a body resulting from the wave
induced flow field which surrounds the body in whole or in part. Such unsteady
fluid forces are the net result of the pressure and shear forces integrated over the
instantaneous wetied area.

This note deals only with cylinders where the diameter - wave length ratio is
small enough to neglect diffraction effects.

The main problem when trying to calculate wave loads is that wave forces are
dependent not only of the instantaneous free flow velocity, but also depend of the
history of the flow field. This is illustrated in Fig. 1, which shows a circular
cylinder in impulsively started flow, i.e. flow suddenly accelerated to a constant
undirectional flow velocity U, at time 15
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Figure 1: Flow field around circular cylinder in impulsively started water flow
reaching a constant free stream velocity U,.

In the initial situation the flow field is similar to the flow field found from
potential theory.

As time goes by separation starts and a pair of fixed vortices is formed behind
the cylinder. Shortly after separation takes place in a singel mobile point creating
an alternating vortex street. At this stage the flow force will be time varying in
size and direction although the free stream is stationary, see also Fig. 2.

Later on the onset of turbulent boundary layer the separation point moves

backwards and the vortex shedding is disorganized with a broad band of shedding
frequencies. The narrowing of the leeside under pressure zone creates a drop in the
drag. . '
It follows from Fig. 1 that even in a unidirectional flow situation the hydro-
dynamic forces on a cylinder are generally speaking dependent on the historical
development of the flow field. In oscillatory and wavy flows the situation is even
more complex mainly due to reversal of the wake and the possible changes of the
boundary layer from larninar to turbulent. This explains the problems of estimat-
ing the wave forces on cylinders. .

Nevertheless, hydrodynamic forces on any body in every situation may be calcu-
lated using the Navier-Stokes equation and the equation of continuity when bound-
ary conditions are known. The limitation is only given by the capacity of todays’
computers being too small, but there is no doubt that, in the future, numerical
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Figure 2: Fzample of wake formation and measured surface pressure in steady flow
(Blevins 1977).

methods based on the Navier-Stokes equation will be more and more predominant.
However, due to the complexity and extent of calculating the hydrodynamic forces
by discretising the problem, the todays standard of using semiemperical formulae
will proceed as praxis in many years.

Since 1950 the calculations of wave forces on cylinders have been based on
Morison’s equation. Morison’s equation for the in-line horizontal force per unit
length on a vertical cylinder represents the total force as the sum of a linear inertial
component and a non-linear drag component. For a cylinder of diameter D in a
flow normal to the axis with free stream velocity and acceleration @ the equation
reads

F=Cn-pnw-D*4-44+Cy-p-DJ2-u-|u | (1)

p being the density of sea-water, C,, and Cy being Morison’s inertia and drag
coefficients. '

As is very well known much experimental work has been carried out to obtain
values of the U, and Cy coefficients. The experiments have been done on models
of piles in laboratory wave flumes, bassins, and oscillatory water tunnels and a
number of prototype field measurements have been performed. Many extensions
of Morison’s equation have been proposed in order to deal with importance of
roughness, rotation of the velocity vector, orientation of the cylinder, proximity of
other elements, shadow effects, spanwise correlation, currents, free surface effects,
short-crestness of sea etc.

The objective of this note is to discuss the Morison coefficients in all these
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situations. But in order to give a physical understanding of the equation we will
discuss the inertia term and the drag term.

2 The Froude-Krylov force and added mass.-
(Inertia term)

The inertia force can be treated in two parts. One representing the pressure on
the cylinder from the non-distributed wave (the Froude-Krylov force), and one
representing the extra force caused by the change in pressure due to the presence
of the cylinder.

Fig. 3 shows a cylinder with diameter D placed in waterdepth d, and we want
to find the wave force F' per unit length of the cylinder.

Figure 3: Sketch of Tiquid’ cylinder in water.

When looking at the resulting pressure on the ‘liquid’ cylinder it should be noted
that this pressure corresponds to a force able to give the liquid mass M = p-7-D?/4
the undisturbed horizontal acceleration ©.. When the diameter D is much smaller
than the wavelength L, so that the pressure gradient and the acceleration are

almost constant across the ‘liquid’ cylinder, Newton’s 2. law (Force = mass -
acceleration) can be applied to obtain
Frg=p-m-D*/4-i=m-0 (2)

The index FK means ‘Froude-Krylov’. The acceleration might be considered
constant over the cylinder when L/D > 5.

The cylinder disturbs the flow field in the area around the cylinder. This of
cause will change the pressures in the flow, and thereby the resultant force. For
streamline bodies like ships etc. the change in the flowfield is moderate in which
case the Froude-Krylov force is a good estimate on the total force.

For small cylinders in stationary flow the maximum velocity near the cylinder
will be the double of the non-disturbed velocity U,, see Fig. 4.

In monocromatic waves (potential theory) also the change in velocity will be

the double of the non-disturbed acceleration, and the wave force will
be the double of the Froude-Krylov force.
F=2p-n-D4-u=2-m-4 : (3)
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Figure 4: Flow around circular cylinder according to potential theory.
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Figure 5: Streamlines around a flat plate for a) pure skin friction drag, b) pure
boundary layer pressure drag (or form drag).

Introducing the added mass m, the force can be described as
F=(m+m,) t (4)

For other geometries than the circular cylinder the added mass will be different.
A sphere has an added mass m, = m/2. This is because the liquid also easily can
flow on the upper and under side of the body. '
“Taking the Froude-Krylov force as basis, the inertia force on abody can be
formulated as follows

F=C,-m-tu where Cp,=1+m,/m (8)

No free surface effects were included in the previous considerations.

3 Drag forces

According to the standard definitions the drag force (profile drag force) is regarded
as the sum of the skin friction drag, which is the resultant in the drag direction of
the shear stress at the surface of the cylinder, and the boundary layer pressure drag
(form drag), which results from the pressure distribution in the boundary layer.
Both viscos effects (skin friction drag and form drag) are handled in one, be-
cause tradionally it has only been possible to find the forces experimentally without
the possibility of separating them. For circular cylinders the form drag will be the
very dominant type of the drag force for the relevant range of Reynolds’ numbers.

5



c
o 4 CIRCULAR
CYLINDER

1.6 3
\\‘ CIRCULAR

DisK

\y
\ 1y
0.8 -

]
\QSPHERE “

\
\
04 :
VA

\-._,. —— In Re
0 — -
1 2 3 4 5 [ 7

Figure 6: Steady flow drag coefficient for different smooth bodies.

From experiments it is found that the drag force per unit length of the cylinder
can be found from the empiric formula:

D |
Fp=p-5Cp-u-lul (6)

The absolute value of u is introduced in order to synchronize force and flow
directions.

For a given shape of the body the drag force must depend on the conditions
in the boundary layer, which are given by Reynolds number Re = (u-D/v), the
relative roughness k and the character (including the turbulence) of the ambient
flow. Consequently it is seen that the drag coefficient must depend on Re and k plus
the character of the ambient flow field. The last point is significant in oscillatory
flow due to reversal of wakes from downstream to upstream side whenever the
velocity changes sign.

Fig. 6 shows the steady flow drag coefficients as function of Reynold number
for several different smooth bodies (k/D = 0). For the circular cylinder and the
sphere the drag coefficients change drastically in the region about Re ~ 105, where
the turbulent vortex trail has developed (compare with fig. 1). This situation
corresponds to a transition -to turbulent boundary layer where exchange of mo-
mentum with the outer flow delays the separation. Consequently the separation
points move backwards so the wake behind the cylinder becomes more narrow and
the partial vacuum behind the cylinder becomes smaller. This phenomenon is not
seen for the disk (flat plate), where the points of separation always will be fixed at
the edges of the plate.

In a wave situation the situation is much more complex partly due to the
unsteady flow where the velocity vector rotates 360 degrees and partiy due to the
influence of the history on the instantaneous flow conditions, cf. Fig. 1.

When it comes to practical calculations of the flow force it is important to
know whether vortices developed or not before the change in the flow direction.
If no vortices are generated the flow will have the character of a potential flow.
When, within half a cycle, several vortices have developed the problem can be
treated as being quasi-stationary, which means that the flow field in large periods
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will be like the stationary flow field. In betveen the two cases only few vortices are
generated and it is much more difficult to predict the flow field. It is mainly for
such situations that the Morison equation has found its use.

The best parameter to characterize an oscillatory flow is found to be the
Keulegan-Carpenter number K = Up,,, - T/D where U,,, and T are the veloc-
ity amplitude and period of the flow, respectively, and D the diameter of the
cylinder.

For small K the potential theory will be valid. For large X the flow will be
quasi-stationary. The specific range of K corresponding to the boundaries for the
two types of flow are not well defined, mainly because of the dependency on the
Reynolds number and the relative roughness which governs the separation of the
vortices. In the literature the lower boundary can be found to be K =1 — 5, and
the upper boundary K = 20 — 50.

Fredspe 1985 gives the schematic illustration shown in Fig. 7.
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Figure 7: Flow around cylinder depending on K. (Fredsge, 1985)

4 Morisons equation for in line forces on cylin-
ders in waves

The Morison equation (1) is purely deterministic, and it is based on a linear com-
bination of the inertia force and the drag force. The formula was published by
Morison et al. (1950) as a result of force measurements on piles due to the action
of progressive waves.



The inertia term and the drag term in Morisons equation can be percieved to
represent the situations where inertia forces or viscous forces dominate.

The inertia forces will dominate when Re is large and K is small, and the drag
forces will dominate when Re is small and K is large. Sarpkaya and Isaacson 1981
states that for K < 10 the inertia term will be dominating and for K > 15 the
drag term will be dominating.

The superposition of the drag and inertia components for the general case
of wave motion where the flows are unsteady, non-uniform and viscous, may be
adopted if it is recognized that the corresponding drag and inertia coeffcients no
longer retain their values deriving from the two reference flows, but are treated as
emperical and taken to depend on the various parameters characterizing the flow.

4.1 Methods for estimation of C; and C,,

It is obvious that the wave forces are very sensible to the values of Cy and C.,,.
Moreover, correct application of Morison’s equation presume detailed knowledge
of the velocity and acceleration field in the occillatory wave.

The water particle kinematics are often calculated rather than measured and
may be determined from wave theories such as linear 1. order, Stokes second or
fifth order, cnoidal, solitary etc. For different choises of wave theory the calculated
particle kinematics may vary significantly, especially in extreme shallow water.

When using the coefficient in Morison’s equation it is very important to be
consistant and as far as possible use the same wave theory in calculation of the
water particle kinematics as was used in the interpretation of the experiments on
which the determination of the Cy and C,, coefficients were based.

The determination of C; and C,, is based on data sets but their meaning depend
on the method of evaluation and on the measured force because there is not a
unique method of evaluation of a given set of kinematic and dynamic data. Some
of the most frequently used methods are as follows:

a) The least squares technique is based on minimization the square of the
difference between the calculated force F, and the measured force F...

For regular waves it means:
27
(Fm — F.)*d9 = minimum (7)
0

Cy 1s found from:

0 Ji" (F,, — F.)*db
8C, N
in case of harmonic waves
4 2 F, sind - |sind)
T3 /o 1pU2,.-D

0 = ‘ . (8)

Cp =

max

Cm is similarly found from:

8 [3"(F — F.)%d0
9C. =0 = (10)




b)

AREA = MINIMUM

Figure 8: [ilustration of the principle in Fourier averaging technigue.

K [F"F, -cosfdf
“x® ipU2,.-D L)

mazr

The Fourier averaging technique is based on a minimization of the area
between the calculated force F, and the measured force Fy,.

In case of a harmonic wave the Morison equation can be written as

3 < 2 -
F=%p-D-UiM-(CD'Sin8 - |sind |"Cm'%'6053) (12)

By multiplying (12) with sinf and cosf respectively and integrating over
one cyclus the coefficients can be found to be

2 Fm

C o 0 _.—%pU?M.,-D - s1nf df _ §f02?-Fm sinb db (13)
D. 27 sin?6|sin6|d6 8 lpU2,.-D
K [ 8
O, =2t Iy Frcos df (14)

™ 1pU2 D

max

Calculate the Cy; and Cy, coefficients at the points corresponding to the
maximun velocity and acceleration.

The method may give small differences between the measured force and the
calculated force in the drag dominated region and in the inertia dominated
region. Sarpkaya and Isaacson 1981 states that the method is not recom-
mended in a wide range of K and Re values where both drag and inertia
may be of equal importance and highly dependent on the historical effects.

Generally the method describes the time variation of the force badly and the
Cq and Cy, coefficients are more sensitive to changes in the wave kinematics
caused by different interpretation than the other methods.
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Figure 9: Definition of the timesn —1, n, n+ 1. Torum 1985)

d) Time varying C; and C,, coefficients can be calculated assuming that they

are constant within a small time interval A8 between two force data points.
Tgrum 1985 gave the following suggestion to determine the C; and Cp,
coeflicients, Fig. 9.

From the basic equations

- D? . |
Fn = g'D‘Cdn'Un'lUni+P1r4 'CMn'uﬂ (15)
7-D? .
Foih = g,D.Cdn.Un+1.lUﬂ+1[+p 1 'CMn'u“+1 (16)

the Cy and C,, coefficients may be found.

CD — F'n. " UTH—]. - Fﬂ+1 ) Uﬂ (17)
n £ . D : (Un * lEjnl 5 Uﬂ+1 = Dfn-é—l " iUﬂ+1| * Uﬂ) ‘

2

Cotn = Fy U2 = Fypyy - U 0
M-n =— 5 n
g : wiy (Uﬂ Unr * [Ungi] = Unir - U - 'Un+1|)

Fig. 10 shows an example of the method.

Mainly based on figures like Fig. 10. Sarpkaya and Isaacson 1981 and many
other authors have concluded that the large variations in Cy(f) and C,,(8)
necessitate an extension of the Morison equation.

Originally this idea was proposed by Keulegan and Carpenter, who ex-
pressed the force in terms of a Fourier series assuming the force to be an
odd-harmonic function:
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Figure 10: Time varying Cy and C,, coefficient. K = 12, Re = 12540. From
Sarpkaya and Isaacson 1981.

F

D g = 2lALsind+ Assindd + Assingd --- +

Bicosd + B3cos30 + Bgcosd8 + --- ] ' (19)
Following the Morison equation the formula (19) can be rewritten:
F 7’ ; ; .
m =% Cr - sind + 2[A38in30 + Agsind0 + - |
—Cy - |cosl] - cosf + 2 [Bscos3d + Bscos56 + - -+ ] (20)

1986 Dummer et al. extended the Morison equation to:

. S Crm * sinf — Cp + |cosf| - cosd +
%p‘D'Uﬁmz a K " g Joe

A3 (0'01 +0.1 6—0.08(}{—12.5)7) _
cos [39 + A‘“% (0_05 +0.35 6-0.04(}{—12.5)2)] I
A~ {0.0025 +0.053 e-o.oe(K-n,s)ﬂ] _

[56 — A% (0.25 + 0.60 ¢~002K-125)")] (21)

A being (2 - C,,)/K - Cp.
Sarpkaya and Isaacson 1981 investigated the difference between the measured

and the calculated force in term of the residue.
Sarpkaya and Isaacson 1981 gave the following suggestion to the force coeffi-

cients. The included third term depends on C,, and the K
N AN Crm + 31n8 — Cplcosb|cosd + — >
D Uhe K7 o
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Figure 11: Comparison of the measured force with that calculated from the two-term
Morison equation, K = 14 and Re = 27800. (Sarpkaya and Isaacson 1981).
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Figure 12: Comparison of the measured force and the calculated force respectively
using the two term and the three term Morison equation. N = 14, Re = 27800.
(Sarpkaya and Isaacson 1981).
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The three term Morison equation proposed by Sarpkaya and Isaacson and the
four term Morison equation proposed by Dummer et al. 1986 have the large ad-
vantage that it in contradiction to proposals from other authors does not introduce
extra independent coefficients in the equation. :

No matter in which way the Cy and C, coefficients are fitted the problem is:
How are the K number and the Reynolds number defined. This may especially be
a problem when the time varying coefficints are used, or when irregular waves are
treated.

For time varying Cy and Cr. coefficients it is usual to use the standard defi-
nition for the Keulegan-Carpenter number K = Up,, - T/D and Re = 2:Umaz
Coefficients based on measurements in irregular waves the Uy, and T could be
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respectively the velocity amplitude and the period for the significant wave.

4.2 Influence of the Keulegan-Carpenter number and the
Reynolds number on C; and (), in oscillatory flow

Physical considerations and simple dimensional analysis show that C; and C,,
are time-dependent and functions of Keulegan-Carpenter number K, the Reynolds
number Re and the relative roughness k/D.

No matter the discussion of the Cy and C,, coefficients together with the basic
Morison equation, the following will be based on correctness of this formula.

In this section a review of the Keulegan-Carpenter number and the Reynolds
numbers effect on the drag and inertia coefficients will be given. Most of the
conclusions are taken from Sarpkaya and Isaacson 1981, who made an excellent
analysis based on Keulegan-Carpenter’s experiments from 1958 and Sarpkaya’s
experiments from 1976.

All experiments reported in this section were performed with smooth cylinders
in oscillatory flow generated in a U-tube, and C; and C,, were determined as the
Fourier averaged coeficients, i.e. C; and C,, are time-invariant.

In the following figures Sarpkaya has introduced the dimensionless frequency
parameter f, being the ratio between the Reynolds number and the Keulegan-
Carpenter number

_de_L (23)

By replacing Re by f one has that Cy and C,, are functions of K, § and k/D.

In comparing Figs. 13 and 15 it is seen that C\.’s dependence on B (Re) indi-
cates opposite trends for larger K. It is believed that the data by Sarpkaya shown
in Fig. 15 are the more reliable.

Fig. 13-16 show that C; depends on both K and Re, and decreases with
increasing Re for a given K. Furthermore it is seen that Cy for small Reynolds
numbers have a maximum at K ~ 10 — 15.

At Reynolds number approximately equal to 0.2 — 0.4 - 104, the drag coefficient
decreases dramatically and reaches a value of about 0.5 for Re o~ 2 — 3 - 105. This
is due to the change in the flow charateristics where a turbulent boundary layer
is created resulting in the vortex trail to become more narrow. This phenomenon
1s named the drag crisis. The drag crisis in oscillatory flow depends among other
parameters on the frequency of the oscillation. From Fig. 16 it can also be seen
that Cg is not always larger for a oscillatory flow than for a steady flow.

At large Reynolds numbers (just after the drag crisis), the drag coefficient
reaches a constant value of about 0.65. _

Fig. 15.shows that Cd for various constant values of the frequency parameter
P decreases with increasing Keulegan-Carpenter number when K > 7 — 14. For
constant Keulegan-Carpenter number C; decreases when Re increases.

Chn has the value found from potential theory (C,, = 2.0) until the Keulegan-
Carpenter number range where symmetric vortices no longer exist, K ~ 5. After
the minimun at a Keulegan-Carpenter number of app. 12-15 (this is when the
transversal vortices normal to the ambient flow are not generated any longer) the
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Figure 13: Replot of Cy and C, from the Keulegan-Carpenter ezperiments as func-
tion of K and the frequency parameter 8. Also shown are points representing four
selected Reynolds numbers. (Sarpkaya 1976).
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Figure 14: Replot of Cy and C,, from the Keulegan-Carpenter ezperiments as func-
tton of K and Reynolds number. The shown points may be found in Figure 183.
(Sarpkaya 1976).
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-1. (Sarpkaya 1976).

inertia coefficient increases with increasing K, until C,, reaches a constant value
of 1.8 for large Reynolds numbers.

Generally it can be noted that for large values of the Reynolds number the
coefficients seem to be almost constant.

Furthermore, the correlation between the inertia and the drag coefficints are
almost -1. This might explain why the Morison equation seems to give resonable
result also in the K and Re range where C,; and C,, change a lot because in this
range drag and inertia forces have the same number of magnitude.

4.3 Roughness effect on C; and C,, in oscillatory flow

Experiments with smooth and sand-roughened cylinders in a U-shaped vertical
tunnel were performed by Sarpkaya in 1976. In U-shaped tunnel experiments it
is possible to obtain much larger Reynolds numbers than in laboratory generated
waves and in addition the flow is uniform along the cylinder. The following Figs.
18-21 from the Sarpkaya experiments show the influence of the relative roughness
on the Fourier averages of Cy and C,,.

Adding roughness to a .smooth cylinder causes the separation of vortices and
the transition to turbulent boundary layer to start at lower Reynolds numbers.
The drag crises therefore develops at lower Reynolds numbers the more rough the
cylinder is.

It is important to notice that for large Re the change from a smooth cylinder
to a cylinder with even a small relative roughness creates many more changes in
Cy and C,, than the change from a small relative roughness to a large relative
roughness. A change in the drag coefficient of 100% can easily be found for a
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Figure 21: Flow charakieristic for 7 < K < 13. Vortez street normal to the ambient
flow. (Williamson 1968)

relative roughness equal to 1/800. For the inertia cofficient the change is smaller,
maybe 10-20%, for a relative roughness equal to 1/800.

The changes of the Cy and C,, coefficients due to roughness of the cylinder is
found to be negatively correlated. This counter-variation is a consequence of the
use of Morison’s equation with time-invariant coefficients rather than a consequence
of a fluid mechanical phenomenon.

4.4 Influence of current on Cy; and Cy, in oscillatory flow

Normally the influence of current is taken into account by adding vectorally the
water particle velocities due to oscillations and current. Morison’s equation then
becomes

F:%pDCa(U‘i‘Uc)!U‘é‘Uc"‘i‘g'pDszU (24)

where U, represents the velocity of the current. The Keulegan-Carpenter number

K and Reynolds number Re may then be calculated as:
UC + Uma:r

= —&_ _'mes m
& D
(25)
Re = U_CM,D
v

In the drag-inertia dominated regime, the vortices arrange themselves in a
vortex street on one side of the cylinder normal to the ambient flow. The side from
which the vortices seperate may become switched either by the action of random
disturbance in the flow or, the restarting of the flow. This flow characteristic is
shown in Fig. 21.

In the drag dominated regime a pair of vortices occurs, and a vortex street is
created behind the cylinder. For the drag dominated flow the strong transverse
pressure gradients are considerably reduced and the double hump in the in-line force
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Figure 22: Flow characteristic for K > 15. Diagonal vortez street eztending from
lower left to upper right. (Williamson 1968)

almost disappears, leading to a much better agreement between the measured and
the calculated force.

Extensive flow visualization experiments (Sarpkaya and Storm1985) with oscil-
lating cylinders in uniform flow have shown that the presence of even very small
currents have the effect that the transverse half vortex street is very unstable and
that the cylinder gets a vortex street behind the cylinder.

Data for Cy and Cy, for oscillatory flow with a superimposed steady current
are shown in Fig. 23-24. The total velocity has been applied in the analysis, and
the resulting force coefficients are sligthly smaller than those for pure oscillatory
motions. This points to a small relative reduction in the forces compared to the
pure oscillation case.

- Even though the force coefficients vary very much in the presence of current,
Sarpkaya and Storm 1985 found the modified Morison equation as in equation (24)
to represent the measured force in a coexisting flow field as well as the original
Morison equation in a no-current field.

All the data presented in the previous figures relate to 2-dimensional, rectlinear
flow. In real situations with waves, also interactions between wave and current take
place.

If the current is in the direction of wave propagation, the wave amplitude
decreases and the wave length increases. And when the current opposes the wave,
the wave becomes steeper and shorter. These effects make it more difficult to
predict the flow field.
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Figure 23: Drag and inertia coefficients versus Keulegan-Carpenter number for
cylinder with relative roughness = 1/100 and frequency parameter § = 1800. (Sarp-
kaya and Storm 1985)

K. being the Keulegan-Carpenter number for the current K. = U, T/D.
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Figure 24: Comparison of measured and calculated forces for a cylinder with relative
roughness = 1/100. § = 1800, K =12, K, = 6. (Sarpkaya and Storm 1985)
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4.5 Effect of orbital motions and pile orientation on Cy
and Cy

In waves the flow field surrounding the cylinder is always three-dimensional. In
wave flows, it is not an easy matter to isolate the effect of orbital motion on cylinder
resistance in waves, particularly in the range of practical K and Re values. This
is because measurements made with waves reflect not only the effect of orbital
motion but also the variation of K and Re with depth.

According to the simple 1st order wave theory, the water particles move in
elliptic orbits. Tests at low Reynolds numbers simulating this flow condition have
been carried out, cf. Fig. 25 which shows Cy and Cy, for a vertical cylinder.
The horizontal flow components normal to the cylinder have been used for the
calculation of the coefficients. It is seen that C; decreases and C,, increases in
orbital flow compared with the oscillatory flow.

e
ACq ACn
25+ 2 e
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Figure 25: Force coefficients for orbital flow around a vertical cylinder. K =

M"TEJ':“LZ- (Sarpkaya 1983) /9.- vy

The relative larger the vertical flow component the more discrepancy from the
oscillatory flow coefficients is seen. This is true especially in the range of impor-
tance of both drag and inertia forces 7 < K < 15 where the flow is complex in
beforehand. However; because the variations in C; and C,, are negatively corre-
lated, the changes in the force are more moderate. Moreover, it turns out that the
horizontal low components (i.e. perpendicular to the cylinder) can be used with
good accuracy in the force calculation).

In case of inclined cylinders it is possible to resolve the fluid velocity and accel-
eration components into net flow vectors which act at an angle « to the cylinder
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Figure 26: Decomposition of velocity vector for an inclined cylinder.

axis. Then one may decompose the vectors into normal and tangential components,
and then ignore the tangential components in the calculation of the force. '

The decomposition of the velocity vector is shown in Fig 26. The Reynolds
number and the Keulegan-Carpenter number should be defined as

P ALY B VAT o

Using Unormat = Unet * sinc to evaluate the drag force, one may see that the
‘in-line’ force is no longer necessarily in-line. Furthermore, the net acceleration
and the inertia force may have other directions than the net velocity vector. The
total force is found by adding vectorally the drag and the inertia force.

These effects complicate the force calculation further because the lift force
(shortly described in chapter 5.0) cannot be separated from the in-line force.

Cotter and Chakrabarti 1984 investigated the force coefficients for inclined
cylinders. Water particle velocity .and accelerations were calculated using the
Stream function theory derived by Dean 1965. Normal velocities and accelerations -
rather than the horizontal velocities and accelerations were used to determine Cy
and Cy, by a least square technique. Fig. 28 shows the results of the experiments
which covered a Reynold number range of 2000-91000. No influence on the force
coefficients were found, but Cotter and Chakrabarti stated that for larger Reynold
numbers an effect may be seen.

Fig. 28 indicates that the procedure of using normal components of the particle
kinematics is rather good as it produces consistent coefficients, but effects from
tangential velocities can still be seen as was the case in the experiments with
orbital flow, Fig. 25.

Despite the many investigations already performed, considerable additional
work is required in order to obtain a better understanding of the wave forces on
oblique members. Until then the use of the principle of normal-component par-
ticle kinematics together with drag and inertia coefficients applicable to vertical
cylinders is generally recommended.
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Figure 27: Test setup for inclined cylinder. (Cotter and Chakrabarti 1984)
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Figure 28: Cy and C,, versus K for a cylinder at 0°, 30° and 45°. Replot from
Cotter and Chakrabarti 1984.
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4.6 Surface effects on Cy and C,,

The forces in the surface zone usually have considerable influence on the mud-line
bending moment. the Morison equation does not predict the force in this zone
very well. Fig 29 shows a comparison between measured and calculated force for
a very steep but non-breaking wave and for a less steep wave. Time invariants Cy
and C,, were used.
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Figure 29: Comparison of measured and calculated force distribution on a smcoth
cylinder. (Frigaard 1988). Cy=1.0 C,, = 1.8. Waterdepth = 1.2 m.

At the time of maximum force the maximum contribution the major contribu-
tion to the force in the surface zone may be assumed drag. On the upstream side
there is a run-up equal to the pressure head, on the downstream side there is a
transitional zone from the zero pressure at the-maximum draw down-point to the
point where the quasi-hydrostatic pressure is equal to the negative pressure behind
the cylinder as indicated on Fig. 30, where also the force intensity is indidicated.

Dean et al. 1981 analysed the wave and force data from the Wave Projects I
and II. A comparison between measured forces and calculated forces using stream
function theory to predict the wave kinematics were performed. In Fig 30.the
ratio of the predicted force F, to the measured force F,, were plotted against the
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Figure 30: Sketch of surface force intensity along cylinder ezposed to waves.
(Torum 1985)

dimensionless submerged distance

; S
$=-m T3 (27)
where s is defined in the figure.

To develop an empirical relationship, the data were sorted according to incre-
ment 0.25 of s’. The average values of predicted in-line forces were calculated, but
only for waves with Reynolds numbers larger than 2-10°. To develop an empirical
relationship the ratio F,/F,, were plotied against s’ for dynamometers at two dif-
ferent levels. Both dynamometer levels resulted in approximately the same form
of the ratio, which were fitted to be

.gz =14 e %8 7. £050.925 o | (28)
Based on the empirical fit (27) the effect of the free surface on the force distri-
bution was included in Morisons equation as follows

p-m-D* .

F=V.Cp- 7 U ' ' (29)

=

AU-U+ Cyy -
in which

_1=

1.0 4 e0188 5" L £550.925 . 5" &' < —1
—137-]-% -—158'(1

Tgrum 1985 recommended the use of modified force coefficient based on Cy and
Cn values found without free surface modifications, Fig. 32. The force coefficients
should be used together with kinematics calculated using the 2nd order wave theory.

It should be noted that impacts from breaking waves can cause surface effects
considerably different from the ones presented here.
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Figure 31: Free surface effect as shown by the ratio of predicted to measured forces
as a function of free-surface prozimity. (Dean et al. 1981)
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Figure 32: Recommended time invariant force coefficients in the surface zone area
(Tgrum 1985).
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4.7 Group effects (interference)

So far only Cy and C|, coefficients for a single cylinder have been treated. Because
many marine structures are multimember structures, it is important to know if
any interference takes place.

The interference effect is depending on parameters like pile spacing, wave di-
rection, roughness and turbulence of the flow. |

The wake of an upstream cylinder can have a profound effect on the fluid forces
on a downstream cylinder. The wake contains turbulence which can trigger a
reduction in the drag force, due to a drag crisis at smaller Reynold numbers than
expected.

An example of the effect of a neighbour cylinder on the drag of an inline placed
test cylinder as function of the cylinder spacing is shown in Fig. 33 taken from
Laird et al. 1971. Both uniform and oscillatory flow are presented. Whereas the
neighbour cylinder influences the drag on the shielded test cylinder considerably
even for a spacing of 10 diameters, the influence is seen to be zero in case of
oscillatory motions for a cylinder spacing of 4 diameters. This indicates that the
interference effects are less pronounced in oscillatory flow than in uniform flow.
No dependency on the Keulegan-Carpenter number and Reynolds number were
reported.

Sarpkaya found that as the amplitude of flow osciallation becomes comparable
or smaller than the gap between the two cylinders, the drag and inertia coefficients
gradually approach those corresponding to an isolated cylinder.

Sarpkaya also found that very large transverse forces can occur when the line
joining the centres of the cylinders is not parallel to the flow direction.

For a more detailed discussion of flow interference see Sarpkaya and Isaacson

1981.
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Figure 33: Variation in Cy-ratio versus cylinder spacing. (From Olsen, based on
Laird et al. 1971)
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5 Transverse forces and spanwise correlation

Morison’s equation is only concerned with in-line forces and cannot be used to
predict transverse forces induced by the shedding of vortices, see Fig. 2. Any
asymmetry that develops around the cylinder will result in a transverse (lift) force,
and the variation in time of the lift force will be a complex combination of the
effect of the oscillatory flow and the shedding rate of the vortices.

A very simple model for the lift force in oscillatory flow is

Fp = %p U2, Cy (30)

max

where C, is denoted the lift coefficient.

The transverse force on a cylinder in oscillatory flow has been investigated by
Sarpkaya 1977. The data for the maximum lift coefficient C; for smooth cylinders
are presented in Figs. 34-35, where C; is defined as maximum amplitude of the
transverse force/0.5-p-D-Up,,.. Sarpkaya found that C; were almost independent

of the relative roughness k/D.
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Figure 34: Lift coefficient versus the Keulegan-Carpenter number K. for various -
values of the frequency parameter B and Reynolds number-Re. k/D ~ 0. (Sarpkaya
1977). '

From Fig. 34-35 it is seen that C, is maximum for a Keulegan-Carpenter
number of approximately 13. This is not surprising because in this range of K the
asymmetry in the vortex shedding is very pronounced.
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Figure 35: Lift coefficient versus Reynolds number for various values of the
Keulegan-Carpenter number. k/D ~ 0. (Sarpkaya 1977).

It is evident that the lift force acting on the cylinder is a major portion of
the total force acting on the cylinder. Fortunately the maximum lift force is out
of phase with the the maximum in-line force. Consequently the maximum in-line
force is a fairly good estimate on the maximum total force.

The alternating nature of the transverse force is just as important as its mag-
nitude. The frequency of the transverse force is shown in Fig. 36 in terms of the
relative frequency f,, defined as the frequency of the transverse force divided by
the frequency of the oscillatory flow. It is apparent that f. is not constant and
increases with increasing K and Re. Because all vortices are not necessarily fully
developed and shed, f, is not necessarily an integer. This phenomenon is particu-
lary common for f, values in the neighbourhood of 3 and also for large values of
K and Re where the oscillations of the transverse force becomes quite irregular.

It is on the safe side to assume that the three-dimensionality of the flow will
reduce the correlation length along the cylinder. The lift coefficients presented in
Figs. 34-35 represent the maximum local values.

Tgrum and Reed 1982 investigated the spanwise correlation along a slender
cylinder by measurement of the-transverse force-at various fixed levels. ~Tests
performed in regular as well as in irregular waves showed that the transverse force
in both cases were irregular.

If the forces at each specific level acted simultaneosly in the same direction then .
for a given probability the summation of forces recorded at different levels should
be exactly the same as the distribution of the recorded summerized force. Fig. 37
shows that this is not the case. Consequently there is not full correlation of the
transverse forces along the cylinder.

The net effect of the spanwise variations of the vortex tube is that the transverse
lift coefficients obtained from a measurement of the total transverse force is not
necessarily identical to those calculated from measurements of transverse forces at
different levels.

The spanwise correlation of the transverse force along a cylinder might be
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Figure 36: Relative frequency f. of vortez shedding as function of K and Re for a
smooth cylinder. (Sarpkaya 1977).
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levels along a vertical smooth cylinder. (Tgrum and Reed 1982).
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Figure 38: Ezamples of dimensionless correlation length 1./ D for transverse forces.
Ezperiments with smooth vertical cylinder in regular waves. (Frigaard 1988).

expressed in terms at correlation function or normalized covariance function

pr,F,(2, Bz) = E[Fy(z) - Fy(z + Az)] /\/E [F2(2)] - E[F2(z + 82)]  (31)

where z is a coordinate along the cylinder.

The length scale . defined by (31) corresponds to the part of the cylinder along
which full correlated transversal force should act in order to give same resulting
transverse force as the total measured force over maz Az

I(2) = /_Z pr,F, (2, A2)d(A2) (32)

Fig. 38 shows an example of l;(z) corresponding to long crested regular waves
(with mean water level as reference point). As seen I.(z) is not a simple function
of K and Re. Futhermore the results reflect only a very narrow Reynold number
range. The experiments indicate rather small correlation lengths.

6 Effects of wave directionality

The determination of wave loads on cylinders are generally based on the application
of one-dimensional frequency spectra representing long-crested (or 2-dimensional,
2-D) seas. However, natural wind generated waves in the open sea are short crested
(or 3-dimensional, 3-D) with directional spread of component waves.

It is to be expected that a 3-D wave representation of a specific surface elevation
time series will result in forces which are somewhat lesser than those predicted
by 2-D wave reprentation of the same time series. This migth be illustrated by
considering a free surface elevation amplitude produced by the crossing of two
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regular waves propagating at an angle to each other. The resulting horizontal fluid
velocities and accelerations and relating forces on a body are generally smaller than
those of a single regular wave with the same free surface amplitude.

The 3-D waves are described by the two-dimensional spectra

5(£,6) = S(f) - G(£,6) (33)

where S(f) is the one-dimensional spectra and G(f,6) is a directional spreading
function.

The one-dimensional frequency spectra may be obtained by integrating the
corresponding directional spectra over §

5(f)= f 5(f,6)d8 (34)
It follows that G(f,9) must satisfy '
G(f,8)df =1 (35)

Various semi-emperical expressions for G(f,6) have been proposed. In many
cases G is considered independent of frequency and given as a cosine-power func-
tion, i.e.

G(68) = C(s) cos™ {%(s ~0,) (36)

where C(s) is a normalizing function needed to ensure the identity (34) and 4, is
the direction about which the spectrum is centered. The normalizing function is
given by :

_ 1 T{s+1)
T2/ (s + L)
where I' is the Gamma function. s decribes the degree of spread about §,. Small
values of s correspond to a wider spread. .

In 1976 Hydraulic Research Station, Wallingford found that in seas with cos?8
continuous distributions of energi between 47/2 the in-line forces on a vertical -
cylinder were 87% of the in-line force in a long crested sea with the same total
energy. The transverse forces in the short crested sea were found to be 50% of the
in-line forces in the long crested sea.

The experiments at Wallingford were performed with fairly large cylinders and
the results can not be employed directly to slender cylinders. Nevertheless, the
reduction in the in-line force to 87% of the force found in long crested seas have
remained a somewhat magic number.

Aage et al. 1989 investigated the distributions of the in-line, the transverse and
the resulting force as funcion of the directional spread. The directional spread was
either zero (long crested waves), a cos?'(6/2) speading function with a constant
standard deviation of 29 degrees for all frequencies, or a reproduce North Sea
spreading function, which has a minimum spread around the spectrum peak and
a large spread of the high frequencies.

In Fig. 39 the curves for the higher in-line forces and the resultant forces for the
2-D and the 3-D waves respectively are nearly identical. This shows that the in-line

C(s) (37)
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Figure 39: Distributions of in-line, transverse, and resulting forces in waves with
different spreading functions. (Aage et al. 1989).

and the transverse forces are generally out of phase. The statistical distributions of
the 3-D wave forces do not vary significantly with the two quite different spreading
functions tested. The in-line (or resultant) forces in short crested waves are about
85% of the forces in similar long crested waves. However, the transversal forces are
about 40-80% larger in short crested waves than in long crested waves.

Fig. 40 a and b show the variation of the ratio of the in-line forces as function
of the horizontal level for short crested and long crested waves respectively. Figure
40 b is from a experimental study at University of Aalborg performed with the
same cylinder as used by Aage et al., 1989.

It is seen that the ratio between the 3-D and 2-D in-line wave forces is rather
independent of the water depth and the significant wave heigth. Note that Fig.
40-a shows a 90% fractile while Fig. 40-b shows the RM S values.
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respectively.
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North sea speading function on 8-D waves. (Aage et al. 1989)
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respectively.

b) Rms values.

H, =015 m, T, = 2.2 sec. Waterdepth =1.0 m.

cos® spreading function on §-D waves.

(Frigaard and Burcharth 1988)

Isaacson and Nwogu 1988 calculated the spectral density of the force on a
cylinder in short crested waves and compared with measurements. The calculations
were based on a linearization of the drag term in Morison’s equation.

The linearized spectral density of the in-line and the transverse forces.in multi-
directional seas were found to be expressed as

/2 2
Sk (w) = l??o?] ./o 60329\j c0529+a—‘;-3in29 dBJ .
i
1 2 D? ?
30000 5,001+ [p 5 ] 50 (38
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/2
Sr,(w) = b oy - {f sin?f - Jcos"’ﬁ + Sjii - 5in2 df?} .
0

m U
-2 D2 2
B-,D-D-CD-[ Sy {w) + [P'T'CmJ 'Sf/(w) (38)

where oy and oy are the standard deviations of the two horizontal particle veloc-
ities.
For the unidirectional case formula (38) leads to

P'D'CD} -0 Sy(w) + [P'%E'Cm} + Sy(w) (39)

-\

1

Fig. 41 shows an example of the use of (38). It is demonstrated that the
formula predicts the in-line force spectra very well.
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Figure 41: Measured and predicted spectra for the in-line force on a segment 40 em
below MW L.

Short crested waves with spectral peak frequency f, = 0.33 Hz, H,o = 0.45 m and
cosine spreading function. (Isaacson and Nwogu 1988).
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7 Concluding remarks

The presented discussion of the Morison equation is not complete. However, it
should be clear that the formula is semi-empirical and many uncertaintiesrelated
to its practical use. Especially when used to predict fluid forces on members
in "real waves”, not only the kinematics of the flow but also the force-transfer
coefficients, become increasingly uncertain, see for example Sarpkaya and Isaacson
1981. Consequently the recommendations of various authoritative sources reveal

substantial latitude. .
It should be noted that this note deals only with wave-generated forces on fixed

vertical slender cylinders. Wave forces on flexible cylinders and horizontal cylinders
can be very different from what is found for fixed vertical cylinders.
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